Witold Orzeszko
ARTICLE

(Polish) PDF

ABSTRACT

Nonparametric regression is an alternative to the parametric approach, which consists of applying parametric models, i.e. models of the certain functional form with a fixed number of parameters. As opposed to the parametric approach, nonparametric models have a general form, which can be approximated increasingly precisely when the sample size grows. Hereby they do not impose such restricted assumptions about the form of the modelling dependencies and in consequence, they are more flexible and let the data speak for themselves. That is why they are a promising tool for forecasting, especially in case of nonlinear time series.
One of the most popular nonparametric regression method is the Nadaraya- Watson kernel smoothing. Nowadays, there are a number of variations of this method, like the local-linear kernel estimator, which combines the local linear approximation and the kernel estimator. In the paper a Monte Carlo study is conducted in order to assess the usefulness of the kernel smoothers to nonlinear time series forecasting and to compare them with the other techniques of forecasting.

KEYWORDS

nonparametric regression, nonparametric forecasting, kernel smoothers, nonlinear time series, Monte Carlo study

REFERENCES

Bowman A. W., Azzalini A., (1997), Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, Clarendon Press, Oxford.

Brock W. A., Dechert W. D., Scheinkman J. A., LeBaron B., (1996), A Test for Independence Based on the Correlation Dimension, Econometric Reviews, 15 (3), 197–235.

Bruzda J., (2007), Procesy nieliniowe i zależności długookresowe w ekonomii. Analiza kointegracji nieliniowej, Wydawnictwo Naukowe UMK, Toruń.

Diks C., Panchenko V., (2007), Nonparametric Tests for Serial Independence Based on Quadratic Forms, Statistica Sinica, 17, 81–98.

Fan J., Gijbels I., (1992), Variable Bandwidth and Local Linear Regression Smoothers, Annals of Statistics, 20 (4), 2008–2036.

Fan J., Yao Q., (2005), Nonlinear Time Series. Nonparametric and Parametric Methods, Springer, New York.

Finkenstädt B., Kuhbier P., (1995), Forecasting Nonlinear Economic Time Series: A Simple Test to Accompany the Nearest Neighbor Approach, Empirical Economics, 20, 243–263.

Gajek L., Kałuszka M., (1996), Wnioskowanie statystyczne. Modele i metody, Wydawnictwa Naukowo-Techniczne, Warszawa.

Granger C. W. J., Lin J-L., (1994), Using the Mutual Information Coefficient to Identify Lags in Nonlinear Models, Journal of Time Series Analysis, 15, 371–384.

Granger C. W. J., Maasoumi E., Racine J., (2004), A Dependence Metric for Possibly Nonlinear Processes, Journal of Time Series Analysis, 25 (5), 649–669.

Granger C. W. J., Teräsvirta T., (1992), Experiments in Modeling Nonlinear Relationships Between Time Series, w: Castagli M., Eubank S., (red.), Nonlinear Modeling and Forecasting, Redwood City, Addison-Wesley, 189–197.

Granger C. W. J., Teräsvirta T., (1993), Modelling Nonlinear Economic Relationships, Oxford University Press.

Härdle W., Lütkepohl H., Chen R., (1997), A Review of Nonparametric Time Series Analysis, International Statistical Review, 65 (1), 49–72.

Hong Y., White H., (2005), Asymptotic Distribution Theory for an Entropy-Based Measure of Serial Dependence, Econometrica, 73, 837–901.

Hyndman R. J., Bashtannyk D. M., Grunwald G. K., (1996), Estimating and Visualizing Conditional Densities, Journal of Computational and Graphical Statistics, 5, 315–336.

Jerzman B., Kicinski W., (2009), Kernel Estimation of Probability Density Function: Properties and Parameters Optimization, Metrology and Measurement Systems, 16 (1), 85–105.

Kosiorowski D., (2015), Two Procedures for Robust Monitoring of Probability Distributions of Economic Data Streams, Operations Research and Decisions, 55–79.

Kulczycki P., (2005), Estymatory jądrowe w analizie systemowej, Wydawnictwa Naukowo-Techniczne, Warszawa.

LeBaron B., (1994), Chaos and Nonlinear Forecastability in Economics and Finance, Philosophical Transactions of the Royal Society of London A, 348 (1686), 397–404.

Markellos R. N., (2002), Nonlinear Dynamics in Economics and Finance, Working paper, Athens University of Economics and Business.

Morley J., (2009), Macroeconomics, Nonlinear Time Series in, w: Meyers R. A., (red.), Encyclopedia of Complexity and System Science, Springer Verlag, New York, 5325–5348.

Nadaraya E. A., (1964), On Estimating Regression, Theory of Probability and its Applications, 9 (1), 141–142.

Orzeszko W., (2004a), Krótkoterminowe prognozowanie chaotycznych szeregów czasowych, Przegląd Statystyczny, 51 (3), 115–127.

Orzeszko W., (2004b), How the Prediction Accuracy of Chaotic Time Series Depends on Methods of Determining the Parameters of Delay Vectors, Dynamic Econometric Models, 6, 231–239.

Orzeszko W., (2005), Identyfikacja i prognozowanie chaosu deterministycznego w ekonomicznych szeregach czasowych, FPiAKE, PTE, Warszawa.

Orzeszko W., (2016), Nieparametryczna identyfikacja nieliniowości w finansowych i ekonomicznych szeregach czasowych, Wydawnictwo UMK, Toruń.

Orzeszko W., (2017), Nonparametric Testing for Serial Independence Using the NRL Statistic, Communications in Statistics - Simulation and Computation, 46 (7), 5151–5165.

Osińska M., Górka J., (2006), Identification of Non-linearity in Economic Time Series, Dynamic Econometric Models, 7, 83-92.

Pagan A., Ullah A., (1999), Nonparametric Econometrics, Cambridge University Press, Cambridge.

Racine J. S., (2008), Nonparametric Econometrics: a Primer, Foundations and Trends in Econometrics, 3 (1), 1–88.

Ramsey J. B., (1996), If Nonlinear Models Cannot Forecast, What Use are They?, Studies in Nonlinear Dynamics & Econometrics, 1 (2), 65–86.

Rosenstein M. T., Collins J. J., De Luca C. J., (1993), A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets, Physica D, 65, 117–134.

Śliwicki D., (2016), Estymacja jądrowa w analizie ekonometrycznej, Wydawnictwo UMK, Toruń.

Stelmach J., (2014), O interpretacji nieparametrycznych modeli regresyjnych, w: Barczak A. S.,

Miśkiewicz-Nawrocka M., (red.), Studia Ekonomiczne, 203, 154–162, Uniwersytet Ekonomiczny w Katowicach.

Stinchcombe M. B., Drukker D. M., (2013), Regression Efficacy and the Curse of Dimensionality, w: Chen X., Swanson N., (red.), Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis, 527-549, Springer, New York.

Stone C. J., (1977), Consistent Nonparametric Regression, Annals of Statistics, 5, 595–620.

Stone C. J., (1982), Optimal Global Rates of Convergence for Nonparametric Regression, Annals of Statistics, 10, 1040–1053.

Takens F., (1981), Detecting Strange Attractors in Turbulence, w: Rand D., Young L., (red.), Dynamical Systems and Turbulence, Springer-Verlag, 366–381.

Wand M. P., Jones M. C., (1995), Kernel Smoothing, Chapman & Hall, London.

Watson G. S., (1964), Smooth Regression Analysis, Sankhya: The Indian Journal of Statistics (Series A), 26 (4), 359–372.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0